Prevention of Ischemic Stroke

Harold P. Adams, Jr., M.D.
Division of Cerebrovascular Diseases
Department of Neurology
Carver College of Medicine
University of Iowa Health Care Stroke Center
University of Iowa
Iowa City, Iowa
Conflicts of Interest

- I have received grant support from Merck, Schering-Plough, and NMT Medical.

- I also receive grant support from NINDS.

- I will be discussing new medications that have not been approved by the FDA.
Importance of Prevention of Ischemic Stroke

- Successful prevention is a cost-effective strategy
 - Acute hospitalization and rehabilitation
 - Long-term care
 - Lost productivity and disability
- Prevention reduces the human suffering from stroke
- Primary prevention – treatment of patients who have not had neurological symptoms
- Secondary prevention – treatment of patients who have had a stroke, TIA, or amaurosis fugax
Risk for Ischemic Stroke

- Asymptomatic but presence of risk factors
- Symptomatic atherosclerotic disease
 - Coronary artery or peripheral arterial disease
- Asymptomatic cerebrovascular disease
 - Carotid bruit or stenosis
- Atrial fibrillation
- Amaurosis fugax
- Transient ischemic attack
- Ischemic stroke
Transient Ischemic Attacks

- TIA should not be considered as different from ischemic stroke
 - It is the mild end of the spectrum
 - It is a stroke with signs that cleared
 - A lesion is often found on brain imaging
- Identifies a high risk for ischemic stroke
 - Instability of the underlying vascular lesion
- Warrants emergency evaluation and treatment
Diagnosis of TIA

- Not all episodes of transient neurological dysfunction are TIA
 - Focal neurological symptoms – loss of function
 - Fit one vascular territory of the brain
 - Sudden onset, usually maximal at beginning
 - May have some gradual resolution
 - Rarely cause confusion or loss of consciousness
 - May have headache

- Definition of 24 hours is out-of-date
 - Most symptoms are 5 - 20 minutes
Differential Diagnosis of TIA

- Seizures (with focal neurological signs)
- Migraine
- Metabolic disorder (hypoglycemia)
- Mass
 - Subdural hematoma
 - Tumor
- Syncope or pre-syncope
- Somatization disorder
- Primary ocular disease
- Labyrinthine causes of vertigo
A TIA is a Symptom

- The cause of TIA is particularly important in stroke prevention because it affects treatment decisions
- General categories of underlying causes
 - Large artery atherosclerosis
 - Small artery disease (lacunes)
 - Cardioembolism
 - Non-atherosclerotic arterial diseases
 - Prothrombotic disorders
 - Cryptogenic
Evaluation of the Patient with Suspected TIA

- Brain imaging: CT or MRI
- Vascular imaging: carotid duplex, TCD, CTA, MRA, or arteriography
- Cardiac studies: ECG, Holter monitor, TEE, TTE
- Blood work: CBC, platelet count, INR, aPTT, renal studies, hemoglobin A1C, glucose, fasting lipid profile
- Specialized testing, such as studies inherited or acquired disorders of coagulation or inflammatory disorders are occasionally done
Components of Management Prevention of Ischemic Stroke

- Selected on a case-by-case basis
- General components
 - Address controllable risk factors
 - Antithrombotic medications
 - Anticoagulants
 - Antiplatelet agents
 - Local (surgical) interventions
 - Carotid endarterectomy
 - EC/IC bypass
 - Angioplasty and stenting
Factors that Affect Decisions for Management

- Presence or absence of modifiable risk factors
- Presence or absence of symptomatic disease
 - Coronary artery or peripheral artery disease
- Presumed cause of ischemic symptoms
- Prior therapies aimed at preventing stroke
- Presence of specific contraindications for treatments
 - Allergy to aspirin
- Preferences of the patient
Major Modifiable Risk Factors
Advanced Atherosclerosis

- Arterial hypertension
 - Isolated systolic hypertension
- Hyperlipidemia
 - Increased LDL cholesterol
 - Decreased HDL cholesterol
- Diabetes mellitus
- Smoking
- Ischemic heart disease
Recommended Management Risk Factors for Atherosclerosis

- **Lower blood pressure**
 - Major impact with even a 5 or 10 mm Hg decline
 - Goals: 120 – 140/80 – 90 mm Hg
 - Involves lifestyle changes and medications

- **Lower lipid levels**
 - Goals: LDL cholesterol < 70 – 100 mg/dL
 - Involves lifestyle changes and medications

Sacco et al, Stroke, 2006; 37: 577
Recommended Management
Risk Factors for Atherosclerosis

- Treat diabetes mellitus
 - Achieve normoglycemia: Hemoglobin A1C < 7%
 - Treat blood pressure
 - Lower lipid levels: LDL cholesterol < 70 mg/dL

- Quit smoking
 - Lifestyle changes, nicotine replacement, medications

- Limit alcohol consumption
- Reduce weight
- Increase exercise

Sacco et al, Stroke, 2006; 37: 577
Antithrombotic Medications

- Mainstay of measures to prevent ischemic stroke
- Controls for trials testing surgical interventions
- Should be prescribed to almost all persons at high risk for ischemic stroke
- Measure of quality of care by the Joint Commission
- May be given singly or in various combinations
- Complements measures to treat risk factors and surgical interventions
Use of Antithrombotic Medications among Stroke Survivors, 2000 - 2006

- Medical Expenditure Panel Surveys of 4168 persons with cerebrovascular disease
- Use of antithrombotic medications
 - Any antithrombotic agent – 3074 (75.3%)
 - Any antiplatelet agent – 2729 (65.9%)
- Use associated with the following:
 - Men
 - Age older than 65
 - Presence of usual source of care
 - Poor-to-fair health

Oral Anticoagulants

- Widely used to prevent stroke among persons with cardiac lesions associated with high risk of embolism
 - Atrial fibrillation complicating structural heart disease
 - Recent myocardial infarction
 - Mechanical prosthetic valves (mitral)
 - Rheumatic heart disease (mitral stenosis/atrial fibrillation)
 - Dilated cardiomyopathy
 - Intraventricular or intra-atrial thrombus
- Possible role in some prothrombotic disorders
Oral Anticoagulants
Non-Valvular Atrial Fibrillation

- Tested in multiple clinical trials
 - Asymptomatic (primary) or symptomatic (secondary) prevention
- Comparisons with placebo, fixed low dose warfarin, aspirin, or combinations of antiplatelet agents
- Adjusted dose anticoagulation with desired INR 2 – 3
 - Absolute risk reduction: 1.4% - 4.5%
 - Relative risk reduction: 68% (50% - 79%)
- Increase risk of symptomatic bleeding

 Sacco et al, Stroke, 2006; 37: 577
Impact of Level of Anticoagulation
Thromboembolism or Intracranial Hemorrhage
Non-Valvular Atrial Fibrillation

- Analysis of 9217 patients with AF in ATRIA Study
- Risks of thromboembolism or intracranial hemorrhage at other levels of INR compared to INR 2.0 – 2.5
- Risk of thromboembolism low and stable when INR is > 1.8
 - INR 1.4 – 1.7: Odds Ratio 3.72 (95% CI 2.67 – 5.19)
- Risk of intracranial hemorrhage low and stable when INR is < 3.6
 - INR 3.6 – 4.5: Odds Ratio 3.56 (95% CI 1.70 – 7.46)
 - No lower risk with INR < 2

Warfarin VS Aspirin/Clopidogrel
Atrial Fibrillation (ACTIVE – W)

<table>
<thead>
<tr>
<th>Event</th>
<th>Clopidogrel and Aspirin N = 3335</th>
<th>Warfarin N = 3371</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcome</td>
<td>235</td>
<td>165</td>
<td>1.44 (1.18 – 1.76)</td>
</tr>
<tr>
<td>Stroke</td>
<td>100</td>
<td>59</td>
<td>1.72 (1.27 – 2.37)</td>
</tr>
<tr>
<td>Ischemic Stroke</td>
<td>90</td>
<td>42</td>
<td>2.17 (1.51 – 3.13)</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>10</td>
<td>93</td>
<td>1.10 (0.83 – 1.45)</td>
</tr>
</tbody>
</table>

Active, Lnacet, 2006; 367: 1903
Adjusted Dose Warfarin or Dabigatran in Atrial Fibrillation

<table>
<thead>
<tr>
<th></th>
<th>Dabigatran 110 mg/day N = 6015</th>
<th>Dabigatran 150 mg/day N = 6076</th>
<th>Warfarin N = 6022</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHADS2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1</td>
<td>1958</td>
<td>1958</td>
<td>1859</td>
</tr>
<tr>
<td>2</td>
<td>2088</td>
<td>2137</td>
<td>2230</td>
</tr>
<tr>
<td>3-6</td>
<td>1968</td>
<td>1981</td>
<td>1933</td>
</tr>
<tr>
<td>Prior warfarin use</td>
<td>3011</td>
<td>3049</td>
<td>2929</td>
</tr>
<tr>
<td>Events</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Embolus/stroke</td>
<td>182</td>
<td>134</td>
<td>199</td>
</tr>
<tr>
<td>Stroke</td>
<td>171</td>
<td>122</td>
<td>185</td>
</tr>
<tr>
<td>ICH</td>
<td>14</td>
<td>12</td>
<td>45</td>
</tr>
<tr>
<td>Serious bleeding</td>
<td>322</td>
<td>375</td>
<td>397</td>
</tr>
</tbody>
</table>

Connolly et al, NEJM, 2009; 361: 1139
Oral Anticoagulants
Persons with Arterial Disease

WARFARIN – ASPIRIN RECURRENT STROKE STUDY
Death/ischemic stroke:
Warfarin: 17.8% Aspirin: 16.0%

WARFARIN – ASPIRIN SYMPTOMATIC INTRACRANIAL DISEASE STUDY
Death/ischemic stroke/ICH:
Warfarin: 21.8% Aspirin: 22.1%

Mohr et al NEJM, 2001; 345: 1444
Chimowitz et al, NEJM, 2005: 352: 1305
Antiplatelet Agents

- Most extensively studied therapies to prevent stroke
 - Broad spectrum of arterial diseases
 - Standard against which surgical therapies and anticoagulants are compared
- Overall, reduce the risk of stroke by 16% - 25%
- Used in both primary and secondary prevention
- Effective in men and women of all ages
- Effective in presence or absence of hypertension
- Effective in presence or absence of diabetes mellitus
Current Choices for Antiplatelet Agents

- Aspirin 30 – 1500 mg/day
 - Usual doses 81 – 325 mg/day
- Dipyridamole 400 mg/day
- Ticlopidine 500 mg/day
- Clopidogrel 75 mg/day
Aspirin

- Extensively studied in prevention of ischemia and first effective therapy to prevent stroke
- Used as monotherapy or in combination with other antiplatelet agents or anticoagulants
- Inexpensive over-the-counter medication that is available in enteric formulations
- Most bleeding complications are not dose-related
- Gastric side effects are associated with larger doses of aspirin
Dipyridamole

- Blocks update of adenosine by the platelet
- Reversible inhibition of platelet aggregation
- Prolongs platelet survival
- Potent vasodilator
- In regular and sustained release formulations
- Most commonly tested as an adjunct to aspirin
- Most common side effect is headache
 - Particular problem in persons who have migraines
- Some increase in risk of bleeding
Aspirin/Dipyridamole vs Aspirin Prevention of Recurrent Stroke

<table>
<thead>
<tr>
<th>European Stroke Preventions Study - 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspirin</td>
</tr>
<tr>
<td>N = 1649</td>
</tr>
<tr>
<td>Stroke</td>
</tr>
<tr>
<td>Stroke/Death</td>
</tr>
<tr>
<td>ESPRIT</td>
</tr>
<tr>
<td>Aspirin</td>
</tr>
<tr>
<td>N = 1376</td>
</tr>
<tr>
<td>Stroke</td>
</tr>
<tr>
<td>Primary event</td>
</tr>
</tbody>
</table>

Diener et al J Neurol Sci, 1996; 143: 1
ESPRIT, Lancet, 2006; 367: 1665
Aspirin/Dipyridamole Vs Clopidogrel Prevention of Recurrent Stroke (PRoFESS)

<table>
<thead>
<tr>
<th></th>
<th>Clopidogrel</th>
<th>Aspirin/Dipyridamole</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 10151</td>
<td>N = 10818</td>
</tr>
<tr>
<td>Stroke</td>
<td>898</td>
<td>916</td>
</tr>
<tr>
<td></td>
<td>8.8%</td>
<td>9%</td>
</tr>
<tr>
<td>Stroke/MI</td>
<td>1333</td>
<td>1333</td>
</tr>
<tr>
<td>Vascular death</td>
<td>1333</td>
<td>1333</td>
</tr>
<tr>
<td></td>
<td>13.1%</td>
<td>13.1%</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>365</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>3.6%</td>
<td>4.1%</td>
</tr>
</tbody>
</table>

Sacco et al, NEJM, 2008; 359: 1238
Clopidogrel

- A prodrug whose metabolite that irreversibly blocks the platelet ADP receptor
- Secondarily inactivates the GP IIb/IIIa receptor
- Daily dose is 75 mg - takes 3 – 7 days for effects on platelet function
- For immediate effects - loading dose of 300 – 600 mg
- Rare hematologic reactions
 - Thrombotic thrombocytopenia purpura
 - Less common than with ticlopidine
- Used alone or in combination with aspirin
Trial of Clopidogrel or Aspirin Patients at Risk for Ischemic Events (CAPRIE)

- Large randomized trial enrolling symptomatic patients with heart disease, TIA, stroke, or peripheral artery disease
- Goal of preventing stroke, myocardial infarction or vascular death
- Aspirin 325 mg/day or clopidogrel 75 mg/day
 - Aspirin: 5.83% annual risk
 - Clopidogrel: 5.32% annual risk
- Benefit primarily among persons with peripheral artery disease

CAPRIE, Lancet, 1996; 348: 1329
Trial of Clopidogrel and Aspirin or Clopidogrel (MATCH)

Diener et al, Lancet, 2004; 364: 331

<table>
<thead>
<tr>
<th>Event</th>
<th>Clopidogrel N = 3802</th>
<th>Clopidogrel and Aspirin N = 3797</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stroke, MI</td>
<td>636 16.7%</td>
<td>596 15.7%</td>
</tr>
<tr>
<td>Vascular death</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serious bleeding</td>
<td>49 1.3%</td>
<td>96 2.6%</td>
</tr>
</tbody>
</table>
Trial of Clopidogrel and Aspirin or Aspirin (CHARISMA)

<table>
<thead>
<tr>
<th></th>
<th>Aspirin</th>
<th>Aspirin and Clopidogrel</th>
</tr>
</thead>
<tbody>
<tr>
<td>All subjects</td>
<td>N = 7721</td>
<td>N = 7802</td>
</tr>
<tr>
<td>Stroke, MI, Vascular death</td>
<td>573 (7.3%)</td>
<td>534 (6.4%)</td>
</tr>
<tr>
<td>Serious bleeding</td>
<td>104 (1.3%)</td>
<td>130 (1.7%)</td>
</tr>
<tr>
<td>Symptomatic</td>
<td>N = 4743</td>
<td>N = 4735</td>
</tr>
<tr>
<td>Stroke, MI, Vascular death</td>
<td>416 (8.8%)</td>
<td>347 (7.3%)</td>
</tr>
<tr>
<td>Serious bleeding</td>
<td>79 (1.7%)</td>
<td>71 (1.5%)</td>
</tr>
</tbody>
</table>

Bhatt et al, NEJM, 2006; 354: 1706
Bhatt et al, JACC, 2007; 49: 1982
Trial of Aspirin and Clopidogrel or Aspirin – Atrial Fibrillation

<table>
<thead>
<tr>
<th>Event</th>
<th>Aspirin N = 3782</th>
<th>Aspirin and Clopidogrel N = 3772</th>
<th>Odds Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ischemic Stroke</td>
<td>343</td>
<td>236</td>
<td>0.68 (0.57 - 0.80)</td>
</tr>
<tr>
<td>Hemorrhagic stroke</td>
<td>22</td>
<td>30</td>
<td>1.37 (0.79 - 2.37)</td>
</tr>
<tr>
<td>Fatal stroke</td>
<td>93</td>
<td>70</td>
<td>0.75 (0.55 - 1.03)</td>
</tr>
<tr>
<td>Myocardial infarct</td>
<td>115</td>
<td>90</td>
<td>0.78 (0.59 - 1.03)</td>
</tr>
<tr>
<td>Vascular death</td>
<td>599</td>
<td>600</td>
<td>1.00 (0.89 - 1.03)</td>
</tr>
</tbody>
</table>

ACTIVE Investigators
NEJM, 2009; 360: 2006
Short-term Combination Therapy
Patients with Recent TIA
(FASTER Study)

- Pilot study that enrolled patients within 24 hours of TIA or minor stroke and followed for 90 days
- Clopidogrel 300 mg loading dose followed by 75 mg/day and aspirin or aspirin monotherapy
- Aspirin: 194 subjects
 - Ischemic or hemorrhagic stroke: 21 (10.8%)
- Aspirin and clopidogrel: 199 subjects
 - Ischemic or hemorrhagic stroke: 14 (7.1%)

Prasugrel

- Recently approved thienopyridine antiplatelet agent for treatment of patients with percutaneous coronary artery interventions
- Prodrug with metabolite that inhibits platelet ADP receptor
- More potent and faster onset of action than clopidogrel
- Less inter-patient variations in response than clopidogrel

Argiolillo et al, Expert Opin Pharmacotherapy, 2008; 9: 2893
Bhatt et al, NEJM, 2009; 361: 940
Trial of Prasugrel or Clopidogrel
TRITON – TIMI 38 Trial

- Randomized trial of 13,608 subjects with high-risk coronary artery disease
 - Most received either bare or drug-eluting stents
 - Prasugrel: 60 mg loading dose and then 10 mg/day
 - Clopidogrel: 300 mg loading dose and then 75 mg/day
- Efficacy outcome of vascular death, MI or stroke
 - Clopidogrel: 12.1% Prasugrel: 9.9% (p < 0.01)
- Safety outcome of major bleeding
 - Clopidogrel: 1.8% Prasugrel: 2.4% (p = 0.03)

Prasugrel
Implications for Stroke

- Limitations in use of medication
 - Not recommended
 - Persons older than 75
 - Active pathological bleeding
 - Persons with a history of TIA or ischemic stroke

- Risk factors for bleeding complications
 - Low weight, bleeding history
 - Concomitant use of other antithrombotic medications

- Try to avoid stopping suddenly in case of bleeding
Ticagrelor vs. Clopidogrel
Acute Coronary Syndromes (PLATO)

- Randomized trial of 16,624 subjects with acute coronary artery syndromes
 - Clopidogrel: 300 – 600 mg and then 150 mg/day
 - Ticagrelor: 180 mg and then 180 mg/day
- Vascular death, stroke or myocardial infarction
 - Clopidogrel: 11.7% Ticagrelor: 9.8% (p <0.001)
- Strokes
 - Clopidogrel: 1.3% Ticagrelor: 1.5% (p = 0.22)
- Major bleeding complications
 - Clopidogrel: 11.2% Ticagrelor: 11.6% (p = 0.43)

Wallentin et al, NEJM, 2009; 361: 1045
Carotid Endarterectomy

- Remains an important option for treatment of patients with moderate-to-severe stenosis of origin of internal carotid artery
- Benefits for surgery are greater among symptomatic persons than those with an asymptomatic stenosis
- Decisions influenced by presence of ulceration of plaque or presence of intraluminal thrombus
- The patient’s overall health, the complexity of the arterial pathology, neurological status, and the track record of the surgeon affect recommendations
Carotid Endarterectomy

- Recommended for symptomatic persons < 6 months
 - Stenosis of 70% - 99%, some cases 50% - 69%
 - Good operative risk and skilled surgeon
 - Surgery preferred within 2 weeks of TIA or minor stroke

Sacco et al, Stroke, 2006; 37: 577
Extracranial – Intracranial Arterial Bypass Operations

- Most commonly is STA/MCA anastomosis
- Tested in a large clinical trial in 1980’s
 - Stenosis of MCA/ICA
 - Occlusion of ICA
 - No net benefit from the operation
- Used to treat some patients with moyamoya
- Being tested again in a subset of patients with occlusion of the ICA
 - Poor collateral flow as demonstrated on PET scans
 - Very high risk group of patients for stroke
Endovascular Interventions

- Rapidly evolving intervention for prevention of stroke

Procedure
- Angioplasty and often placement of a stent
- Use of a distal protection device

Indications
- Treatment of a stenosis secondary to atherosclerosis or an arterial dissection
- Extracranial or intracranial artery in either the carotid or vertebrobasilar circulation

- Most available data is for treatment of stenosis of the origin of the internal carotid artery
Stent Protected Angioplasty Vs. Carotid Endarterectomy (SPACE)

<table>
<thead>
<tr>
<th>Symptomatic patients < 120 days & stenosis >70%</th>
<th>CEA</th>
<th>CAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 607</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>N = 589</td>
<td>31</td>
<td>39</td>
</tr>
</tbody>
</table>

30 Days

| Death | 32 | 28 |
| Ipsilateral stroke | 43 | 49 |

2 Years

Eckstein et al, Lancet Neurology, 2008; 7: 893
Endarterectomy VS Angioplasty
Symptomatic Severe Carotid Stenosis (EVA – 3S)

<table>
<thead>
<tr>
<th>Symptomatic patients < 120 days & stenosis >70%</th>
<th>CEA (N = 262)</th>
<th>CAS (N = 265)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 Days</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Stroke</td>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>4 Years</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Death</td>
<td>34</td>
<td>36</td>
</tr>
<tr>
<td>Non-ipsi stroke</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ipsilateral stroke</td>
<td>15</td>
<td>30</td>
</tr>
</tbody>
</table>

Mas et al, Lancet Neurology, 2008; 7: 885
High-risk patients with carotid stenosis
- Symptomatic > 50%, asymptomatic > 80%

Angioplasty and stenting – 167 subjects
- 159 treated, 30-day morbidity: 4.8%
- 1 year: 12 deaths, 7 ipsilateral strokes
- 3 years: 31 deaths, 11 ipsilateral strokes

Carotid endarterectomy – 167 subjects
- 152 treated, 30-day morbidity: 9.8%
- 1 year: 21 deaths, 7 ipsilateral strokes
- 3 years: 35 deaths, 9 ipsilateral strokes

Gurm et al, NEJM, 2008; 358: 1572
Endovascular Treatment
Extracranial Internal Carotid Artery

- Recommendations likely to change soon
- Current recommendations
 - Symptomatic severe stenosis
 - Location difficult to reach with carotid endarterectomy
 - Prior radiation therapy to neck
 - Prior carotid endarterectomy with recurrent stenosis
 - High-risk medical condition

Sacco et al, Stroke, 2006; 37: 577
Endovascular Treatment of Posterior Circulation Stenosis or Intracranial Arterial Stenosis

- Limited data about safety and efficacy
- Origin of the vertebral artery from subclavian artery
- Extracranial vertebral artery
 - Symptomatic patients
 - Recurrent symptoms despite medical therapy
- Intracranial stenosis
 - Symptomatic severe stenosis
 - Recurrent symptoms despite medical therapy

Sacco et al, Stroke, 2006; 37: 577
Conclusions

- Management is multifaceted and selected on a case-by-case basis
- Should include aggressive management of risk factors for accelerated atherosclerosis
 - Arterial hypertension
 - Hyperlipidemia
 - Smoking
 - Diabetes mellitus
- Involve both lifestyle changes and medications
- Prescribed to both symptomatic and asymptomatic medications
Conclusions
Antithrombotic Medications

- Antithrombotic medications should be prescribed to almost all patients at high risk for stroke
- Includes both anticoagulants and antiplatelet agents
- Prescribed as a monotherapy or in combinations
- Prevention of cardioembolic stroke
 - Oral anticoagulants remain the preferred intervention
 - Adjusted doses of warfarin with an INR of 2 – 3
 - Aspirin or aspirin/clopidogrel are alternatives for persons who cannot take oral anticoagulants
 - Combination of oral anticoagulant and aspirin
Antithrombotic Agents to Prevent Ischemic Stroke

- Antiplatelet agents are preferred antithrombotic therapy for most non-cardiac causes of TIA or stroke
- Selected on a case-by-case basis
- May be combined with local interventions
 - Endovascular interventions – initial dual therapy
- May be prescribed as monotherapy or in combinations
 - Aspirin
 - Aspirin and dipyridamole
 - Clopidogrel
 - Aspirin and clopidogrel
Conclusions
Local Interventions

- Carotid endarterectomy is the preferred therapy for treatment of stenosis of origin of internal carotid artery
- Role of bypass operations is being tested again
- Role of endovascular therapies is expanding
 - Extracranial stenosis of internal carotid artery
 - Extracranial stenosis of vertebral artery
 - Intracranial stenosis - internal carotid artery, vertebral artery, basilar artery, or middle cerebral artery
Future Advances
Prevention of Ischemic Stroke

- New antithrombotic medications
 - Prasugrel
 - Ticagrelor
 - Dabigatran

- Aggressive management of arterial endothelium
 - Statins
 - Antihypertensive medications

- Expansion of endovascular interventions